
Vugraphs for Appendix A.



OPTIMIZATION WITH RESPECT TO A
VECTOR PARAMETER

• Problems in optimization commonly arise involving

{ real and complex vector parameters

{ complex scalar parameters

{ various constraints

• Frequently the quantity to be optimized is not analytic

• Need to have e®ective \power tools" for these problems
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GRADIENT WITH RESPECT TO A
REAL VECTOR PARAMETER

PROBLEM

Minimize (maximize) the

quantity Q = Q(a) with
respect to the real vector

parameter a =

⎡⎢⎢⎢⎣
a1
a2
...
aN

⎤⎥⎥⎥⎦

APPROACH

Set

∇aQ def
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Q
∂a1
∂Q
∂a2...
∂Q
∂aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

• Will develop formal rules for computing ∇aQ.
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REAL GRADIENT EXAMPLES

1. For Q= bTa = b1a1 + b2a2 + · · ·+ bNaN

∇aQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Q
∂a1
∂Q
∂a2...
∂Q
∂aN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
b1
b2
...
bN

⎤⎥⎥⎥⎦ = b

2. For Q= aTBa =
�
j
�
k Bjk aj ak

By a similar procedure: ∂Q
∂aj =

�
k(Bjk+ Bkj)ak

⇒∇aQ = (B+BT)a (= 2Ba when B is symmetric)
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GRADIENT WITH RESPECT TO
A REAL VECTOR PARAMETER
FOR SOME COMMON EXPRESSIONS

Quantity Q aTb bTa aTBa

Gradient ∇aQ b b 2Ba

Note: B is assumed to be symmetric.
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GRADIENTWITH RESPECT TO A COMPLEX
SCALAR QUANTITY

• Functions with dependence Q= Q(a, a∗) are not analytic;

therefore
∂Q

∂a
does not exist.

• If a and a∗ are considered separate variables, then partial

deriviatives usually exist and are given by

∂Q

∂a
=
1

2

X
∂Q

∂ar
− j∂Q

∂ai

~
and

∂Q

∂a∗
=
1

2

X
∂Q

∂ar
+ j

∂Q

∂ai

~
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GRADIENTWITH RESPECT TO A COMPLEX
SCALAR (cont'd.)

• For purposes of optimization, one sets ∂Q
∂ar

=
∂Q

∂ai
= 0

• This can be done by de¯ning

�aQ
def
=

1

2

X
∂Q

∂ar
− j∂Q

∂ai

~
and �a∗Q

def
=

1

2

X
∂Q

∂ar
+ j

∂Q

∂ai

~

and setting either �aQ or �a∗Q to zero.

A-6



COMPLEX GRADIENT RELATIONS
(SCALAR PARAMETER)

Quantity Q a∗b ab |a|2 = aa∗

Gradient �aQ 0 b a∗

Gradient �a∗Q b 0 a
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CHECKING FOR A MINIMUM OR MAXIMUM

1. The condition

�aQ = 0 or �a∗Q = 0

determines a stationary point.

2. For a minimum or maximum, let �2abQ def
= �a

p�
bQ
Q
. Then

the following two conditions must hold:w
�2
aaQ

W
·
w
�2
a∗a∗Q

W
−
w
�2
aa∗Q

W2
< 0

and

�2
aa∗Q

l
> 0 for a minimum
< 0 for a maximum
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COMPLEX GRADIENT ILLUSTRATED
(SCALAR PARAMETER)

Find the complex scalar parameter a to minimize

Q= (x− ay)∗T(x− ay)

Apply the complex gradient, using results from the table:

Q = x∗Tx− a∗y∗Tx− ax∗Ty+ |a|2y∗Ty
�a∗Q = −y∗Tx+ ay∗Ty = 0

This yields the result a =
y∗Tx
y∗Ty

Note:The gradient can also be computed without expanding as

�a∗Q = −y∗T(x− ay)

A-9



COMPLEX GRADIENT (cont'd.)

The result can be further checked for a minimum. Since

�a∗Q = −y∗T(x− ay) and �aQ = −(x− ay)∗Ty

therefore

�2aa∗Q = �a
p�a∗Q

Q
= y∗Ty while �2aaQ = �2a∗a∗Q= 0

Thus the two conditions for a minimumw
�2
aaQ
W
·
w
�2
a∗a∗Q

W
−
w
�2
aa∗Q

W2
= 0− (y∗Ty)2 < 0

and

�2aa∗Q = y∗Ty > 0
are satis¯ed.
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COMPLEX GRADIENT WITH RESPECT TO
A VECTOR PARAMETER

∇aQ=
D∇a∗Q∗i∗ def= 1

2

p
∇arQ− j∇aiQ

Q

Quantity Q a∗Tb b∗Ta a∗TBa

Gradient ∇aQ 0 b∗ (Ba)∗

Gradient ∇a∗Q b 0 Ba

Note: B is assumed Hermitian symmetric.
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CONSTRAINED OPTIMIZATION

PROBLEM

Minimize (maximize) the quantity Q(a) subject to a complex

constaint C(a) = 0.

APPROACH

Form the Lagrangian

L = Q(a) + λC(a) + λ∗C∗(a)

and set and set the complex gradient ∇aL or ∇a∗L to zero.
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CONSTRAINED OPTIMIZATION (cont'd.)

WHY IT WORKS

Observe that

L = Q(a) + λC(a) + λ∗C∗(a)
= Q(a) + 2ReλC(a)
= Q(a) + 2λr Cr(a)− 2λi Ci(a)

It is equivalent to adding two real constraints, but the ¯rst form

is more convenient for use with the complex gradient.

Note: When C(a) is real, the last term can be dropped and λ

becomes a real Lagrange multiplier.
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CONSTRAINED OPTIMIZATION
ILLUSTRATED

Find a to maximize

Q = a∗TBa (B Hermitian symmetric)

subject to the constraint a∗Ta = 1.

The constraint is ¯rst written as

C(a) = 1− a∗Ta= 0

where it can be observed that C(a) is real.
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CONSTRAINED OPTIMIZATION
ILLUSTRATED (cont'd.)

The Lagrangian is

L= a∗TBa+ λ(1− a∗Ta)

and the complex gradient condition follows:

∇a∗L= Ba− λa = 0 =⇒ Ba = λa

This shows that a must be an eigenvector of B, but since

Q= a∗T(Ba) = a∗T(λa) = λ

the desired eigenvector to maximize Q is the one corresponding

to the largest eigenvalue.
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